Methane Clusters at Low Temperatures

Ana Poykova and Evgeniya Daykova
University of Sofia

Abstract

Four methane clusters containing 2, 10, 55, 137, 229 molecules: magic numbers for closed shells in different structures

MOTIVATION

- Fundamental properties of symmetrical molecules in a symmetrical environment
- Greenhouse effect & hydrogen storage
- Clathrate [2, 3]
- Beauty

Figure 1. Evaporation of a molecule: Rosen Radev's vision. Monte Carlo simulations of 59 methane cluster at 50K.

OBJECTS - SMALL

Size is always a special-case experience (Fuller)

Why 'small' is different?

Number of connections - a basis for the phenomenon of 'small is different'

Figure 2. Classical and quantum interaction potential.

- Integration of (1) and (2) at a constant total energy using the velocity Verlet algorithm [1] with a time step of 1 fs that keeps the energy constant up to \((10^{-5})\) for 1 ns production runs

Figure 3. Four specific mutual orientations for 2 CH$_4$ molecules (from left to right) - aligned, perpendicular, anti-aligned "1" and anti-aligned "2".

Figure 4. Potential energy per molecule for a methane dimer at 4 different mutual orientations.

The cluster state - liquid or solid - is determined by the radial distribution function \(g(r)\).

Figure 5. Radial distribution function for 55 molecules arranged in a static \(\rho_{\text{se}}\), a static \(\rho_{\text{se}}\), and a "real" structure at \(T = 10\ K\).

Table 1. NN=Nearest-Neighbors; NNN=Next-to-the-Nearest-Neighbors.

<table>
<thead>
<tr>
<th>number of neighbors</th>
<th>NN (3.5-4.1Å)</th>
<th>NNN (4.1-4.5Å)</th>
<th>NNN + NNN (5.5-5.9Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>mean</td>
<td>3.85</td>
<td>3.6</td>
<td>7.56</td>
</tr>
</tbody>
</table>

Liquid-solid-like phases are usually distinguishable via the value of the modified Lindemann index \(\delta_{\text{Lin}}\) (the cluster is solid if \(\delta_{\text{Lin}} < 0.08\) [5]):

\[\delta_{\text{Lin}} = \sqrt{\frac{1}{N} \sum_{i,j \neq i} \left(\frac{|r_i - r_j|}{\langle r \rangle} \right)^2} < 0.08 \]

Figure 6. Lindemann index - size effect.

The low-frequency peak in the vibrational spectra at \(T=10\K\) corresponds to a collective surface wave.

CONCLUSION

The most important finding in this study is that dimers of molecules with a specific mutual anti-ferro ordering determine the cluster structure at low temperatures. Obviously, the angular dependence of the classical interaction causes a specific alignment of molecular axes even if the external pressure is zero. The topography of the potential energy surface of clusters of various sizes must be studied as well.

Acknowledgements

Financial support from the Ministry of Education and Research (Grant F-3/2003).

Production runs: Monte Carlo - Rosen Radev

Department of Atomic Physics
Faculty of Physics
5 James Bouchier Blvd.
Sofia 1126, Bulgaria
email: anap@phys.uni-sofia.bg
http://cluster.phys.uni-sofia.bg:8080/

References